https://www.selleckchem.com/products/fb23-2.html No licensed vaccine is available for prevention of EBV-associated diseases, and robust, high-throughput bioanalytical assays are needed to evaluate immunogenicity of gp350 subunit-based candidate EBV vaccines. Here we have developed an improved EBV-GFP based neutralization assay for such a vaccine's pre-clinical and clinical validation to measure EBV specific neutralizing antibodies in human donors. The supplementation of guinea pig complement of our previously published high-throughput EBV-GFP fluorescent focus (FFA)-based neutralization assay allowed the detection of complement-dependent neutralizing antibodies using a panel of heat-inactivated healthy human sera. Anti-gp350 antibody titers, which were evaluated using a previously optimized anti-gp350 IgG ELISA assay, were moderately correlated to the FFA-based neutralization titers. Overall, this improved high-throughput neutralization assay is capable of characterizing the serologic neutralizing antibody response to natural EBV infection, with applications in evaluating EBV antibody status in epidemiologic studies and immunogenicity of candidate gp350-subunit EBV vaccines in clinical studies.Introduction The aim of the study was to enumerate the clinical, hematological, and molecular spectrum of G6PD deficiency in malaria endemic regions of south west Odisha. Methods Diagnosis of G6PD deficiency was made by using the Di-chloroindophenol Dye test in two south west districts (Kalahandi and Rayagada) of Odisha State. Demographic and clinical history was taken from each individual using a pre-structured questionnaire. Molecular characterization of G6PD deficiency was done using PCR-RFLP and Sanger sequencing. Results A total of 1981 individuals were screened; among them, 59 (2.97%) individuals were G6PD deficient. The analysis revealed that G6PD deficiency was more among males (4.0%) as compared to females (2.3%). Prevalence of G6PD deficiency was significantly higher