https://www.selleckchem.com/products/asunaprevir.html The human voice qualitatively changes across the lifespan. Although some of these vocal changes may be pathologic, other changes likely reflect natural physiological aging. Normative data for voice characteristics in healthy aging is limited and disparate studies have used a range of different acoustic features, some of which are implicated in pathologic voice changes. We examined the perceptual and acoustic features that predict healthy aging. Participants (N = 150) aged between 50 and 92 years performed a sustained vowel task. Acoustic features were measured using the Multi-Dimensional Voice Program and the Analysis of Dysphonia in Speech and Voice. We used forward and backward variable elimination techniques based on the Bayesian information criterion and linear regression to assess which of these acoustic features predict age and perceptual features. Hearing thresholds were determined using pure-tone audiometry tests at frequencies 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz. We further explored potroductions associated with age-related hearing loss. This normative data of healthy vocal aging may assist in separating voice pathologies from healthy aging. Findings suggest that acoustic features that predict healthy aging are different than those previously reported for the pathologic voice. We propose a model of healthy and pathologic voice development in which voice characteristics are mediated by the inability to monitor vocal productions associated with age-related hearing loss. This normative data of healthy vocal aging may assist in separating voice pathologies from healthy aging. The center of resistance (C ) is regarded as the fundamental reference point for predictable tooth movement. Accurate estimation can greatly enhance the efficiency of orthodontic tooth movement. Only a handful of studies have evaluated the C of a maxillary first molar; however, most had a low sample size (in single digits), us