Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Vorinostat-saha.html High-fidelity duplex formation combined with the synthetic accessibility of the monomer building blocks makes these systems attractive targets for further investigation.Advanced thermal insulation materials with low thermal conductivity and robustness derived from regenerative resources are badly needed for building energy conservation. Among them, nanofibrillated cellulose aerogels have huge application potential in the field of thermal insulation materials, but it is still a challenge to prepare cellulose aerogels of excellent comprehensive properties in a simple way. Herein, we demonstrate a unidirectional freeze-drying strategy to develop a novel "robust-soft" anisotropic nanofibrillated cellulose aerogel (NFC-Si-T) by integrating nanofibrillated cellulose (NFC) and Si-O-Si bonding networks under the catalytic dehydration of p-toluenesulfonic acid (TsOH). The anisotropic structure endows the NFC-Si-T with high flexibility that can be easily bent or even tied with a knot, and in addition, it possesses high Young's modulus (1-3.66 MPa) that can resist the compression weight of 10,000 times of its own weight without deformation. Furthermore, the NFC-Si-T aerogels exhibit anisotropic thermal insulation performances with a low average thermal conductivity (0.028-0.049 W m-1 K-1). More importantly, the limited oxygen index of the NFC-Si-T reaches up to 42.6-51%, showing excellent flame-retardant performance. Therefore, the "robust-soft" anisotropic NFC-Si-T aerogels can be used as an advanced thermal insulation material for building thermal insulation applications.A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding ma
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत