Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/AZD5438.html The difficulty of applying deep learning algorithms to biomedical imaging systems arises from a lack of training images. An existing workaround to the lack of medical training images involves pre-training deep learning models on ImageNet, a non-medical dataset with millions of training images. However, the modality of ImageNet's dataset samples consisting of natural images in RGB frequently differs from the modality of medical images, consisting largely of images in grayscale such as X-ray and MRI scan imaging. While this method may be effectively applied to non-medical tasks such as human face detection, it proves ineffective in many areas of medical imaging. Recently proposed generative models such as Generative Adversarial Networks (GANs) are able to synthesize new medical images. By utilizing generated images, we may overcome the modality gap arising from current transfer learning methods. In this paper, we propose a training pipeline which outperforms both conventional GAN-synthetic methods and transfer learning methods.Clinically, the Fundus Fluorescein Angiography (FA) is a more common mean for Diabetic Retinopathy (DR) detection since the DR appears in FA much more contrasty than in Color Fundus Image (CF). However, acquiring FA has a risk of death due to the fluorescent allergy. Thus, in this paper, we explore a novel unpaired CycleGAN-based model for the FA synthesis from CF, where some strict structure similarity constraints are employed to guarantee the perfectly mapping from one domain to another one. First, a triple multi-scale network architecture with multi-scale inputs, multi-scale discriminators and multi-scale cycle consistency losses is proposed to enhance the similarity between two retinal modalities from different scales. Second, the self-attention mechanism is introduced to improve the adaptive domain mapping ability of the model. Third, to further improve strict constraints in the feather leve
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत