Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pf-05221304.html In this Letter, we report a high-power narrow-linewidth Yb-Raman fiber amplifier with a high second-order Raman threshold and high intensity stability. By employing two temporally stable seed lasers, over 2 kW output power at 1120 nm is achieved at a pump power of 2.6 kW with an optical-to-optical efficiency of 76.3%. The 3 dB linewidth of the 1120 nm Raman-signal laser varies slightly from 0.41 nm to 0.53 nm, and the power ratio of the second-order Raman Stokes light is only about $-46.3\;\rmdB$ at the output power of 2 kW. The results further confirm that the technique of employing temporally stable seed lasers is superior to the power scaling of narrow-linewidth Yb-Raman fiber amplifiers. To the best of our knowledge, it is the first demonstration of an over 2 kW narrow-linewidth fiber laser operating at 1120 nm.A novel, to the best of our knowledge, method to extract optical microring resonators' loss characteristics is proposed and demonstrated using optical frequency domain reflectometry (OFDR). Compared with the traditional optical transmission measurement method, the spatial-resolved backscattering optical signals obtained from the OFDR can clearly show the resonance mode's increased optical path length due to its circulation inside the resonator. By further processing the backscattered optical signals, loaded $Q$-factors of several resonators can be accurately determined. A calculation model is proposed to derive the resonance mode's intrinsic $Q$-factor from OFDR measurements of a series of loaded resonators.We numerically demonstrate an all-dielectric approach for magnetically tunable add/drop of optical channels in dense wavelength division multiplexing applications. Our concept comprises a micro-ring resonator, with an inner magneto-optical disk, side-coupled to two waveguides. The simulation results, obtained within the ITU-T G.694.1 recommendation, indicate high performance add/drop of odd and even
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत