Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/smoothened-agonist-sag-hcl.html 853 and 0.763 for the deep learning methods, and 0.761 and 0.704 for the traditional ones. Deep learning is a viable approach for semi-automated segmentation of pulmonary nodules on CT scans. Deep learning is a viable approach for semi-automated segmentation of pulmonary nodules on CT scans. This study aimed to establish a non-invasive and simple screening model of coronary atherosclerosis burden based on the associations between multiple blood parameters and total plaque score (TPS), segment-stenosis score (SSS), coronary artery disease severity (CADS) in coronary artery disease (CAD) and thus reduce unnecessary coronary angiography (CAG). A total of 1,366 patients with suspected CAD who underwent CAG were included in this study. The clinical risk factors [age, gender, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), high-density lipoprotein (HDL), triglyceride (TG), low-density lipoprotein (LDL), fasting plasma glucose (FPG), and glycated hemoglobin (GHB)] were collected. The presence of plaques and lumen stenosis was assessed based on CAG imaging. The TPS, SSS, and CADS were calculated, and the distribution spectrum of atherosclerotic plaques was described. Kruskal-Wallis test for multiple comparison tests was performed to analyze the differences in grrval (CI) 0.713 to 0.789], 0.728 (95% CI 0.687 to 0.766), and 0.756 (95% CI 0.717 to 0.793), respectively. The most common site of lesions was P-LAD. These models can be used as non-invasive and simple initial screening tools without CAG. The most common site of lesions was P-LAD. These models can be used as non-invasive and simple initial screening tools without CAG. The location and severity of tibiofemoral bone contusions in magnetic resonance imaging scans in patients with acute non-contact anterior cruciate ligament injuries can reflect the primary mechanisms of anterior cruciate ligament injuries. There h
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत