Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/gsk-j1.html MicroRNA-134-5p (MiR-134-5p) has been proposed as a promising novel biomarker for the diagnosis of acute myocardial infarction (AMI). However, the biological role of miR-134-5p in ischemic cardiomyocytes has been little disclosed yet. Expression of miR-134-5p and X-linked inhibitor of apoptosis protein (XIAP) was detected using RT-qPCR and western blot. Oxidative stress and cell apoptosis were determined by enzyme-linked immunosorbent assays, 3-(4, 5-dimethylthiazole-2-y1)-2, 5-biphenyl tetrazolium bromide assay, flow cytometry, western blot, and terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL). The interaction between miR-134-5p and XIAP was confirmed by luciferase reporter assay. Expression of miR-134-5p was upregulated in serum of AMI patients and hypoxia/reoxygenation (H/R)-induced cardiomyocytes (AC16 and HCM). MiR-134-5p downregulation could inhibit H/R-mediated release of lactic dehydrogenase enzyme (LDH) and malondialdehyde (MDA), and promote superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels. Meanwhile, cell viability was increased, while the apoptosis rate and TUNEL positive cells were inhibited by miR-134-5p downregulation in H/R-treated AC16 and HCM cells. Mechanically, XIAP was downregulated and targeted by miR-134-5p in H/R-induced cardiomyocytes in vitro. Overexpression of XIAP inhibited oxidative stress and cell apoptosis in H/R-treated AC16 and HCM cells, which was similar to miR-134-5p knockdown. Moreover, downregulation of XIAP could partially reverse the effect of miR-134-5p knockdown in H/R-induced cardiomyocytes. Knockdown of miR-134-5p protected cardiomyocytes from H/R-induced oxidative stress and apoptosis in vitro through targeting XIAP.The prototypical reactivity profiles of transition metal dihydrogen complexes (M-H2 ) are well-characterized with respect to oxidative addition (to afford dihydrides, M(H)2 ) and as acids, heterolytically delivering H
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत