Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/MG132.html We demonstrated a 2.1 µm nanosecond laser pumped, 2.6 µm continuous-wave (CW) seed injected, cadmium selenide (CdSe) signal singly resonant optical parametric oscillator (OPO). A maximum average power of 1.05 W was obtained corresponding to a pulse energy of 1.05 mJ at the idler wavelength of 10.1 µm and optical-to-optical conversion efficiency of 4.69%, beam quality of $M_x^2=2.25$Mx2=2.25, $M_y^2=2.12$My2=2.12 and pulse width of 24.4 ns. To the best of our knowledge, this is the first time to achieve 10-12 µm laser with watt-level average power using OPO technology.The creation of ultraviolet optical vortex beams with the topological charge of $ \vert l \vert = 1 $|l|=1 at the wavelength of 325 nm was demonstrated from a He-Cd metal vapor laser with a spot defect mirror. The measured $ \rm M^2 $M2 factor was close to the theoretical value of two of the $ \rm LG_01 $LG01 Laguerre-Gaussian mode. Some interference experiments showed that the obtained vortex beams were stable enough for practical applications such as holographic lithography.Computational cannula microscopy is a minimally invasive imaging technique that can enable high-resolution imaging deep inside tissue. Here, we apply artificial neural networks to enable real-time, power-efficient image reconstructions that are more efficiently scalable to larger fields of view. Specifically, we demonstrate widefield fluorescence microscopy of cultured neurons and fluorescent beads with a field of view of 200 µm (diameter) and a resolution of less than 10 µm using a cannula of diameter of only 220 µm. In addition, we show that this approach can also be extended to macro-photography.In vivo high-resolution images are the most direct way to understand retinal function and diseases. Here we report the use of visible-light optical coherence tomography with volumetric registration and averaging to achieve cellular-level retinal structural imaging in a rat eye, covering the
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत