Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tipranavir.html Enzymatic cross-linking of polymer-catechol conjugates in the presence of horseradish peroxidase (HRP) and H2O2 has emerged as an important method to fabricate in situ-forming, injectable hydrogels. Subsequently, tissue adhesion studies using catechol-containing polymers were extensively reported. However, because of the presence of numerous variables such as polymer concentration, oxidizing agent/enzyme, and stoichiometry, the design of the polymer with optimized tissue adhesive property is still challenging. In this study, a poly(γ-glutamic acid) (γ-PGA)-dopamine (PGADA) conjugate was synthesized, and in situ hydrogels were fabricated via enzymatic cross-linking of a catechol moiety. To optimize the tissue adhesive property of the PGADA hydrogel, the effect of various factors, such as polymer concentration, catechol substitution degree (DS), HRP concentration, and H2O2 content, on the gelation behavior and mechanical strength was investigated. The gelation behavior of PGADA hydrogels was characterized using a rheometer and rotational viscometer. Also, the possibility of its use as a tissue adhesive was examined by evaluating the tissue adhesion strength in vitro and ex vivo.The successful tissue integration of a biomedical material is mainly determined by the inflammatory response after implantation. Macrophage behavior toward implanted materials is pivotal to determine the extent of the inflammatory response. Hydrogels with different properties have been developed for various biomedical applications such as wound dressings or cell-loaded scaffolds. However, there is limited investigation available on the effects of hydrogel mechanical properties on macrophage behavior and the further host inflammatory response. To this end, methacrylate-gelatin (GelMA) hydrogels were selected as a model material to study the effect of hydrogel stiffness (2, 10, and 29 kPa) on macrophage phenotype in vitro and the further host i
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत