Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/agi-24512.html Furthermore, the catalyst has excellent electrical conductivity (R = 1.73 Ω), which enables pollutants adsorbed on the catalyst surface to transfer electrons to the persulfate through the N-doped sp2-hybrid carbon network faster.Groundwater recharge in hyper arid areas often depends on surface water infiltration and diffuse recharge of highly evaporated precipitation only contribute under favorable conditions. This happens in the Calama basin two-aquifer system, in the Central Andean area of northern Chile. A conceptual model of the groundwater system and its relationship with the Loa River is defined. We focus on the confined aquifer of the Calama basin, combining hydrodynamic, hydrogeochemical and isotopic methods. Radiocarbon (14C) activity data of dissolved inorganic carbon (DIC), in conjunction with chemical data, are applied to evaluate groundwater residence time within the confined aquifer. The Loa River recharges the Calama basin aquifers in its northeastern part, with water that has chemical and isotopic characteristics inherited from the arid environment and volcanic rocks in its upper basin. In the central and northeastern part of the confined aquifer, minor variations in chloride concentration suggest that the deep aquifer is well confined. The δ18O and δ2H values in groundwater of the confined aquifer show an increasing isotopic fractionation from the recharge area (around -10‰ δ18O) to those in the discharge area (between -8.5‰ and -8‰) in the southwestern part of the aquifer. The 14C activity continuously decreases down flow from the recharge by the Loa River. Adjusted DIC radiocarbon ages indicate a groundwater travel time between 1500 and 4000 years in the confined aquifer of Calama. Despite the limitations and uncertainties of radiocarbon in DIC to estimate groundwater transit times for the confined aquifer and considering complementary chemical and isotopic constraints, the DIC 14C provides accep
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत