Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/TGF-beta.html com/liushaomin/MitosisDetection.Non-small cell lung cancer (NSCLC) caused by the mutation of epidermal growth factor receptor (EGFR) is a major cause of death worldwide. EGFR Tyrosine kinase inhibitors (TKIs) have been developed against the EGFR. These TKIs produce promising results at initial stage of therapy, but the efficacy becomes limited due to the emergence of drug resistance in most cases after about an year, due to a secondary point mutation. In this work, we investigated the drug resistance mechanism due to the EGFR mutations. We performed molecular dynamics (MD) simulation for EGFR-drug interactions complexes. Euclidean distance and binding free energy are used for drug resistance analysis and drug-protein interactions visualization. A PCA-based method is proposed to find normal, rigid, flexible, and critical residues. Overall, we have established a systematic method for the visualization of protein-drug interactions, which provides an effective framework for the analysis of lung cancer drug resistance at atomic level.Reinforcement learning is a powerful tool for developing personalized treatment regimens from healthcare data. Yet training reinforcement learning agents through direct interactions with patients is often impractical for ethical reasons. One solution is to train reinforcement learning agents using an 'environment model,' which is learned from retrospective patient data and can simulate realistic patient trajectories. In this study, we propose transitional variational autoencoders (tVAE), a generative neural network architecture that learns a direct mapping between distributions over clinical measurements at adjacent time points. Unlike other models, the tVAE requires few distributional assumptions and benefits from identical training and testing architectures. This model produces more realistic patient trajectories than state-of-the-art sequential decision-making models and generative neural networks
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत