Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/GDC-0449.html However, low-salinity water thin-films are stable due to the repulsive electric double-layer forces, leading to less pressure drop during mobilization of the blob. The novelty of this work lies in efficiently capturing the nanoscale effects of the electric double-layer in pore-scale multiphase flow displacements. Our quantitative investigations provide fundamental insights into the efficiency of low-salinity waterflooding. Metal-organic frameworks (MOFs) with porous structures, high surface areas, diverse compositions, and functional linkers are promising materials and good carriers for building high-performance devices. In this work, uniform cobalt-doped ZnO nanoparticles (Co-doped ZnO NPs) derived from a MOF mold were synthesized, demonstrating the first example of synthesizing doped semiconductor metal oxide nanostructures using such strategy. The synthesis method produced Co-doped ZnO NPs that had a controllable doping mode, adjustable surface status, good dispensability, ferromagnetism and catalytic activity. The Co-doped ZnO NPs were evaluated as a sensing material for diabetes biomarker detection; the obtained sensors showed a high response to trace acetone (18.2 at 5 ppm), fast response/recovery times, a low detection limit (170 ppb), and long-term stability for 4 months. The enhanced sensing performance can be attributed to the increased number of active sites, additional impurity energy levels, and the catalytic ability of elemental Co. Moreover, the optimized sensor could distinguish between simulated diabetic breath and healthy human breath samples. The MOF-derived Co-doped ZnO NPs are a good candidate for the low-cost and noninvasive diagnosis of diabetes, and the proposed synthesis strategy can be extended to other types of extrinsically doped oxide materials. Currently, the synthesis of nanostructured inorganic materials with tunable morphology is still a great challenge. In this study, almond skin ex
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत