Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pyr-41.html The decrease of more toxic As(III) and its oxidation to less mobile As(V) by Si-rich biochar amendments is a promising As detoxification phenomenon in the rice rhizosphere.Organoarsenic compounds have been widely used as pesticides and chemical agents. Lewisite (C2H2AsCl3), a blister agent, is a model of such compounds. A comprehensive detailed kinetic mechanism of combustion has been developed based on theoretical investigations. A benchmark allowed to select an appropriate methodology able to deal with such a heavy atom as As with precision and reasonable computational times. The density functional theory (DFT) method ωB97X-D was found to give the best results on target data. Core pseudo potentials were used for arsenic with the cc-pVTZ-PP basis set, whereas Def2-TZVP basis set was used for other atoms. The mechanism of the decomposition of lewisite includes all reactions involved in thermal decomposition and combustion mechanisms, including molecular and radical intermediates, and the decomposition reactions of small species containing arsenic. Simulation shows that lewisite decomposition starts around 700 K and is very little sensitive to the presence of oxygen since the radical reactions involve mainly very reactive Cl-atoms as chain carriers. The main reaction paths have been derived. As experimentally observed, AsCl3 is the main arsenic product produced almost in one-to-one yield, whereas acetylene is an important hydrocarbon product in pyrolysis. In combustion, several arsenic oxides, eventually chlorinated, are produced, which toxicity need to be assessed.Iron oxychloride (FeOCl) is utilized as a activator of peroxymonosulfate (PMS) for the degradation of paracetamol (APAP) and phenacetin (PNCT) in response to the water pollution by persistent pharmaceuticals. The degradation process was well fitted with a pseudo-first order kinetic pattern, and the excellent catalytic performance towards APAP (100 % removal)
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत