Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ziritaxestat.html Accurate breast cancer detection using automated algorithms remains a problem within the literature. Although a plethora of work has tried to address this issue, an exact solution is yet to be found. This problem is further exacerbated by the fact that most of the existing datasets are imbalanced, i.e. the number of instances of a particular class far exceeds that of the others. In this paper, we propose a framework based on the notion of transfer learning to address this issue and focus our efforts on histopathological and imbalanced image classification. We use the popular VGG-19 as the base model and complement it with several state-of-the-art techniques to improve the overall performance of the system. With the ImageNet dataset taken as the source domain, we apply the learned knowledge in the target domain consisting of histopathological images. With experimentation performed on a large-scale dataset consisting of 277,524 images, we show that the framework proposed in this paper gives superior performance than those available in the existing literature. Through numerical simulations conducted on a supercomputer, we also present guidelines for work in transfer learning and imbalanced image classification.To understand the underlying biological mechanisms of gene expression data, it is important to discover the groups of genes that have similar expression patterns under certain subsets of conditions. Biclustering algorithms have been effective in analyzing large-scale gene expression data. Recently, traditional biclustering has been improved by introducing biological knowledge along with the expression data during the biclustering process. In this paper, we propose the Pathway-based Order Preserving Biclustering (POPBic) algorithm by incorporating Kyoto Encyclopedia of Genes and Genomes (KEGG) based on the hypothesis that two genes sharing similar pathways are likely to be similar. The basic principle of the P
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत