Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/yap-tead-inhibitor-1-peptide-17.html We verify the effectiveness and efficiency of our method on challenging public datasets. Experiments demonstrate that our method outperforms the recent state-of-the-art region-based methods in complex scenarios, especially in the presence of partial occlusions and ambiguous colors.The vanilla Generative Adversarial Networks (GANs) are commonly used to generate realistic images depicting aged and rejuvenated faces. However, the performance of such vanilla GANs in the age-oriented face synthesis task is often compromised by the mode collapse issue, which may produce poorly synthesized faces with indistinguishable visual variations. In addition, recent age-oriented face synthesis methods use the L1 or L2 constraint to preserve the identity information in synthesized faces, which implicitly limits the identity permanence capabilities when these constraints are associated with a trivial weighting factor. In this paper, we propose a method for the age-oriented face synthesis task that achieves high synthesis accuracy with strong identity permanence capabilities. Specifically, to achieve high synthesis accuracy, our method tackles the mode collapse issue with a novel Conditional Discriminator Pool, which consists of multiple discriminators, each targeting one particular age category. To achieve strong identity permanence capabilities, our method uses a novel Adversarial Triplet loss. This loss, which is based on the Triplet loss, adds a ranking operation to further pull the positive embedding towards the anchor embedding to significantly reduce intra-class variances in the feature space. Through extensive experiments, we show that our proposed method outperforms state-of-the-art methods in terms of synthesis accuracy and identity permanence capabilities, both qualitatively and quantitatively.We investigate the application of Ramsey spectroscopy for the development of a microcell atomic clock based on
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत