Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/phorbol-12-myristate-13-acetate.html In this article, the model-free robust formation control problem is addressed for cooperative underactuated quadrotors involving unknown nonlinear dynamics and disturbances. Based on the hierarchical control scheme and the reinforcement learning theory, a robust controller is proposed without knowledge of each quadrotor dynamics, consisting of a distributed observer to estimate the position state of the leader, a position controller to achieve the desired formation, and an attitude controller to control the rotational motion. Simulation results on the multiquadrotor system confirm the effectiveness of the proposed model-free robust formation control method.Recent research achievements in learning from demonstration (LfD) illustrate that the reinforcement learning is effective for the robots to improve their movement skills. The current challenge mainly remains in how to generate new robot motions automatically to perform new tasks, which have a similar preassigned performance indicator but are different from the demonstration tasks. To deal with the abovementioned issue, this article proposes a framework to represent the policy and conduct imitation learning and optimization for robot intelligent trajectory planning, based on the improved locally weighted regression (iLWR) and policy improvement with path integral by dual perturbation (PI²-DP). Besides, the reward-guided weight searching and basis function's adaptive evolving are performed alternately in two spaces, i.e., the basis function space and the weight space, to deal with the abovementioned problem. The alternate learning process constructs a sequence of two-tuples that join the demonstration task and new one together for motor skill transfer, so that the robot gradually acquires motor skill, from the task similar to demonstration to dissimilar tasks with different performance metrics. Classical via-points trajectory planning experime
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत