Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/a-83-01.html We report nonlinear optical characterization of cm-long polycrystalline silicon (poly-Si) waveguides at telecom wavelengths. Laser post-processing of lithographically-patterned amorphous silicon deposited on silica-on-silicon substrates provides low-loss poly-Si waveguides with surface-tension-shaped boundaries. Achieving optical losses as low as 4 dB cm-1 enabled us to demonstrate effects of self-phase modulation (SPM) and two-photon absorption (TPA). Analysis of the spectral broadening and nonlinear losses with numerical modeling reveals the best fit values of the Kerr coefficient n2=4.5×10-18 m W-1 and TPA coefficient βTPA=9.0×10-12 m2 W-1, which are within the range reported for crystalline silicon. On-chip low-loss poly-Si paves the way for flexible integration of nonlinear components in multi-layered photonic systems.We investigated the use of backscatter properties of atmospheric ice particles for space-borne lidar applications. We estimated the average backscattering coefficient (β), backscatter color ratio (χ), and depolarization ratio (δ) for ice particles with a wide range of effective radii for five randomly oriented three-dimensional (3D) and three quasi-horizontally oriented two-dimensional (2D) types of ice particle using physical optics and geometrical integral equation methods. This is the first study to estimate the lidar backscattering properties of quasi-horizontally oriented non-pristine ice crystals. We found that the χ-δ relationship was useful for discriminating particle types using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. The lidar ratio (S)-δ relationship, which is determined using space-borne high-spectral-resolution lidar products such as EarthCARE ATLID or future space-borne lidar missions, may also produce robust classification of ice particle types because it is complementary to the χ-δ re
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत