Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Nolvadex.html Aggregation kinetics and surface charging properties of rod-like sulfated cellulose nanocrystals (CNCs) have been investigated in aqueous suspensions containing monovalent, divalent, or trivalent inorganic salts. Electrophoresis and time-resolved dynamic light scattering (DLS) were used to characterize the surface charge and colloidal stability of the CNCs, respectively. The surface charge and aggregation kinetics of the sulfated CNCs were found to be independent of solution pH (pH range 2-10). For the monovalent salts (CsCl, KCl, NaCl, and LiCl), the critical coagulation concentration (CCC) followed the order of Cs+ Ba2+, which is in the reverse order of the counterion ionic size. For the trivalent salts (LaCl3, AlCl3, and FeCl3), the CNCs suspension was destabilized much more effectively. The observed complex stability curves with AlCl3 and FeCl3 are attributed to charge neutralization and charge reversal imparted by the adsorption of aluminum and ferric hydrolysis species on the CNC surface. The significant charge reversal induced by the ferric hydrolysis species led to the restabilization of suspensions. Our results on the colloidal stability of CNCs are of central importance to the nanotechnology and materials science communities working on various applications of CNCs. The shrinkage of microbubbles that are less than about 50µm in diameter is a well-known phenomenon that results from the surface tension. It has also been shown recently that hydroxyl ions have an extremely strong affinity for gas-water interfaces including bubble surfaces. A theoretical model is proposed that predicts bulk nanobubble stability in water, based on a force balance that results from the shrinkage of microbubbles. This model was designed to test the hypothesis that the surface tension of a shrinking microbubble can ultimately be balanced by the repulsion of the hydroxyl ions that initially adsorb onto the microbubble surface prior t
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत