Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ Copyright © 2020 American Chemical Society.Nanoparticle (NP)-stabilized foam technology has found potential applications in CO2 enhanced oil recovery (EOR) and greenhouse gas geological storage practices and accordingly attracts lots of research interest. To screen the optimal formula for the satisfactory foam performance, orthogonal experimental design (OED) is used in this paper for the complex multifactor multilevel system consisting of five influential factors of NP size, surfactant concentration, NP concentration, temperature, and salinity at four different levels in the range of 7-40 nm, 0-0.15 wt %, 0-0.2 wt %, 25-55 °C, and 0-3 wt %, respectively. Based on the orthogonal principle, only 16 experiments were performed to analyze the effect of various factors on the foam height and foam half-life properties. In addition to showing that the influence of the single factor on foam static properties, OED results reveal that the surfactant concentration and temperature are dominating factors on foamability and stability of the NP-stabilized CO2 foam, respectively. Finally, NP-stabilized CO2 foam with satisfactory static characteristics is obtained with the OED recommended composition of a 0.15 wt % surfactant concentration, 0.1 wt % NP concentration, and NP size of 7 nm in 1 wt % saline solution at temperatures of 30 and 50 °C, validating that the OED method could substantially facilitate the laboratory screening and optimization process for a successful NP-stabilized CO2 foam application. Copyright © 2020 American Chemical Society.Synthetic organic dyes constitute a major pollutant in wastewater. Here, we describe the synthesis and characterization of N-halamine nanoparticles (NPs) for decomposition of organic dyes from contaminated wastewater. Cross-linked poly(methacrylamide) (PMAA) NPs of hydrodynamic diameters ranging from 11 ± 1 to 161 ± 31 nm were synthesized at room temperature by redox surfactant-free dispersion copolymerization
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत