Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/rmc-4550.html Non-destructive testing techniques have gained importance in monitoring food quality over the years. Hyperspectral imaging is one of the important non-destructive quality testing techniques which provides both spatial and spectral information. Advancement in machine learning techniques for rapid analysis with higher classification accuracy have improved the potential of using this technique for food applications. This paper provides an overview of the application of different machine learning techniques in analysis of hyperspectral images for determination of food quality. It covers the principle underlying hyperspectral imaging, the advantages, and the limitations of each machine learning technique. The machine learning techniques exhibited rapid analysis of hyperspectral images of food products with high accuracy thereby enabling robust classification or regression models. The selection of effective wavelengths from the hyperspectral data is of paramount importance since it greatly reduces the computational load and time which enhances the scope for real time applications. Due to the feature learning nature of deep learning, it is one of the most promising and powerful techniques for real time applications. However, the field of deep learning is relatively new and need further research for its full utilization. Similarly, lifelong machine learning paves the way for real time HSI applications but needs further research to incorporate the seasonal variations in food quality. Further, the research gaps in machine learning techniques for hyperspectral image analysis, and the prospects are discussed.ESBL-producing Enterobacterales (ESBL-E) remain a significant global threat. In several regions of the world, ESBLs are produced by over half of Escherichia coli or Klebsiella pneumoniae infections, contributing to significant morbidity and mortality. Though it is accepted that carbapenems are effective for the treatment of
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत