Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/bmn-673.html Due to insoluble iron (Fe) sources in soil, limited Fe availability leads to the disruption of the photosynthetic apparatus; this affects the growth and productivity of plants such as quince (Cydonia oblonga) that are very sensitive to low Fe content. Plant growth-promoting rhizobacteria (PGPR) play an important role in the regulation of Fe uptake under its limited availability. Therefore, in this research, two PGPR (Pseudomonas fluorescens and Microccucuce yunnanensis), at two Fe levels [50 μM (Fe-sufficiency) or 5 μM (Fe-deficiency)], were used to investigate the impact of the given bacteria on improving the acquisition of Fe in quince seedlings. Upon Fe-deficiency, the highest shoot and root biomass (7.14 and 6.04 g plant-1 respectively), the greatest chlorophyll concentration (0.89 mg g-1FW), and the largest Fe concentrations in roots and shoots (30% and 48.7%, respectively) were shown in the quince treated with M. yunnanensis. Both PGPR increased the root citric acid and the phenolic compound concentration. Two days after Fe-deficiency and PGPR treatments, a 1.5- fold increase, was observed in the expression of HA7. The highest PAL1 gene expression and the greatest PAL activity (95.76 μmol cinnamic acid g-1FW) were obtained from the M. yunnanensis treatment. The expression of the FRO2 gene was also affected by Fe-deficiency and PGPR treatments, resulting in an increase in the FCR activity and a surge in the Fe concentrations of leaves and roots. It could, therefore, be concluded that the PGPR modulated Fe acquisition in the quince seedlings upon Fe-deficiency by influencing the physico-chemical and molecular responses.The annual Zea mays ssp. mexicana L. is a member of the teosinte group and a close wild relative of maize. Thus, Zea mays ssp. mexicana L. can be effectively used in maize breeding. AtCCHA1 is a Mn2+ and/or Ca2+/H+ antiporter localized in chloroplasts in Arabidopsis. In this study, its homolog from
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत