Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/s-gsk1349572.html 32 kcal/mole) and sinapic acid (- 5.00 kcal/mole) in their decreasing order. Further, active site residues were identified in both the isoforms and in silico mutation and docking analysis was performed. Our analysis suggested that ASP228, TYR262, and PRO326 for Ll4CL1 and SER165, LYS247 and PRO315 for Ll4CL2 were important for their functional activity. Based on differential substrate preferences of the two isoforms, as a first step towards genetically modified Leuaena having the desired phenotype, it can be proposed that over-expression of Ll4CL1 gene and/or down-regulation of Ll4CL2 gene could yield higher S/G ratio leading to better extractability of lignin.In this work, we isolated and selected oleaginous yeasts from rock field soils from two National Parks in Brazil (Caparaó and Serra dos Órgãos) with the potential to accumulate oil from xylose, the main pentose sugar found in lignocellulosic biomass. From the 126 isolates, two were selected based on their lipid contents. They were taxonomically identified as Papiliotrema laurentii (UFV-1 and UFV-2). Of the two, P. laurentii UFV-1 was selected as the best lipid producer. Under unoptimized conditions, lipid production by P. laurentii UFV-1 was higher in glucose than in xylose. To improve its lipid production from xylose, we applied response surface methodology (RSM) with a face-centered central composite design (CCF). We evaluated the effects of agitation rate, initial cell biomass (OD600), carbon/nitrogen ratio (C/N ratio) and pH on lipid production. P. laurentii UFV-1 recorded the highest lipid content, 63.5% (w/w) of the cell dry mass, under the following conditions C/N ratio = 1001, pH value = 7.0, initial OD600 = 0.8 and agitation = 300 rpm. Under these optimized conditions, biomass, lipid titer and volumetric lipid productivity were 9.31 g/L, 5.90 g/L and 0.082 g/L.h, respectively. Additionally, we determined the fatty acid composition of P. laurentii
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत