Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/peptide/avexitide.html This work examines a high temperature latent heat storage system, which could find use in future concentrated solar power and other combined heat and power plants. In contrast to lab-based fully charged or totally discharged states, partial load states will be the principal operation states in real-world applications. Hence, a closer look on the partial load states and the effective power rates are worthwhile for a successful implementation of this storage type. A vertical finned shell and tube heat exchanger pipe with a combination of transversal and longitudinal fins is applied. Sodium nitrate with a melting temperature of 306 ° C is used as phase change material and thermal oil serves as heat transfer fluid. Temperatures in the storage and the heat transfer fluid as well as the mass flow are measured for data analysis. The state of charge formulation is based on an enthalpy distribution function, where the latent heat of fusion is spread over a specific temperature range. The data show consistently high power rates for all partial load cycles at any state of charge. The mean power rate for charging is 6.78 kW with an 95.45 % confidence interval of ± 1.14 kW for all cycles. The discharging power rate is -5.72 kW with a 95.45 % confidence interval of ± 1.36 kW for all cycles. The lowest power rate is measured for the full cycle at the end of charging/discharging. It is caused by a narrow volume, which is not penetrated by fins, near the perimeter of the cylindrical heat exchanger. The state of charge formulation correlates with the storage capacity and enables state of charge based cycling. With the energy balance of the storage, the data validity is proven and further storage parameters are determined. The energy density is as high as 110 kW h m-3 and a power rate of 2.28 kW m-1 for the finned tube is confirmed. These values are highly promising for further development and application of latent heat storage system
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत