Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/l-mimosine.html A rotating coordinate system model is used to describe the procedure of polarization detection in polarization optical time-domain reflectometry (POTDR), which reveals the relationship of the system response with respect to the initial state of polarization and the direction of the polarizer. On this basis, a 45° aligned dual-polarizer structure is proposed for the suppression of signal fading in the POTDR system. For ease of practical application, an integrated space optics scheme is implemented with the combination of three collimators, one beam splitter, and two polarizers whose principal axes are 45° aligned. Experimental results show that the possibility of signal fading occurrence is reduced from 35.5% in a traditional POTDR down to 6.5% using the proposed scheme.Laser-induced breakdown spectroscopy (LIBS) signals in water always suffer strong pulse-to-pulse fluctuations that result in poor stability of the spectrum. In this work, a spectrum normalization method based on acoustic signals measured by a hydrophone immersed in water was developed and compared with laser energy normalization. The characteristics of the acoustic signals were studied first, and the correlations between the acoustic signals and LIBS spectra were analyzed. It showed that the spectral line intensity has a better linear relationship with the acoustic energy than with the laser energy. Consequently, the acoustic normalization exhibited better performance on the reduction of LIBS spectral fluctuation versus laser energy normalization. Calibration curves of Mn, Sr, and Li were then built to assess the analytical performance of the proposed acoustic normalization method. Compared with the original spectral data, the average RSD_C values of all analyte elements were significantly reduced from 5.00% to 3.18%, and the average RSD_P values were reduced from 5.09% to 3.28%, by using the acoustic normalization method. These results suggest that
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत