Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/YM155.html The non-adiabatic quantum dynamics of the H + H2 + → H2 + H+ charge transfer reactions, and some isotopic variants, is studied with an accurate wave packet method. A recently developed 3 × 3 diabatic potential model is used, which is based on very accurate ab initio calculations and includes the long-range interactions for ground and excited states. It is found that for initial H2 +(v = 0), the quasi-degenerate H2(v' = 4) non-reactive charge transfer product is enhanced, producing an increase in the reaction probability and cross section. It becomes the dominant channel from collision energies above 0.2 eV, producing a ratio between v' = 4 and the rest of v's, which that increase up to 1 eV. The H + H2 + → H2 + + H exchange reaction channel is nearly negligible, while the reactive and non-reactive charge transfer reaction channels are of the same order, except that corresponding to H2(v' = 4), and the two charge transfer processes compete below 0.2 eV. This enhancement is expected to play an important vibrational and isotopic effect that needs to be evaluated. For the three proton case, the problem of the permutation symmetry is discussed when using reactant Jacobi coordinates.Cavity-mediated light-matter coupling can dramatically alter opto-electronic and physico-chemical properties of a molecule. Ab initio theoretical predictions of these systems need to combine non-perturbative, many-body electronic structure theory-based methods with cavity quantum electrodynamics and theories of open-quantum systems. Here, we generalize quantum-electrodynamical density functional theory to account for dissipative dynamics of the cavity and describe coupled cavity-single molecule interactions in the weak-to-strong-coupling regimes. Specifically, to establish this generalized technique, we study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling. By tuning the coupling, we
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत