Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ Moreover, CS&ED implementation can be an effective means for the managers to mitigate career-concerns.With respect to sustainable development, how to promote renewable energy is a major issue. Here, we introduce a hybrid subsidy mechanism that considers both input and output subsidies. Hybrid subsidies are analyzed with stochastic optimization approaches. An outstanding advantage of hybrid subsidies is the flexibility to adjust the intensity between the input and output subsidies. Our study shows that input-biased subsidies advance outputs and improve environmental efficiency (EE), while output-biased subsidies reduce risk and boost producer subsidy equivalents (PSEs). Therefore, the policy implication of this research is that different subsidy intensities should be employed according to preferences or social requirements.The present research studies the photocatalytic degradation of a pesticide using TiO2 and Fe3O4 nanoparticles supported on ZnO mesoporous (mZnO) substrate. Chlorpyrifos is an organophosphate pesticide with a C9H11Cl3NO3PS chemical formula. It is broadly utilized in agricultural fields to control product pests. The chlorpyrifos toxicity is acute and still dangerous to any aquatic organisms. The mZnO/TiO2-Fe3O4 material was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and N2 adsorption and desorption (Brunauer-Emmett-Teller; BET). In order to optimize three important operating parameters, i.e., chlorpyrifos concentration, mZnO/TiO2-Fe3O4 nanocomposite amount, and pH, for photocatalytic degradation of chlorpyrifos, response surface methodology (RSM) was applied. The central composite design (CCD) including 20 experiments was used to conduct experiments. The highest photodegradation performance of about 94.8% was obtained for a chlorpyrifos concentration of 8 ppm
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत