Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/gmx1778-chs828.html To improve the predictive ability of literature models for model-informed therapeutic drug monitoring (TDM) of meropenem in intensive care units, we propose to tweak the literature models with the "prior approach" using a subset of the data. This study compares the predictive ability of both literature and tweaked models on TDM concentrations of meropenem in critically ill patients. Blood samples were collected from patients of an intensive care unit treated with intravenous meropenem. Data were split six times into an "estimation" and a "prediction" datasets. Population pharmacokinetic (popPK) models of meropenem were selected from literature. These models were run on the "estimation" dataset with the $PRIOR subroutine in NONMEM to obtain tweaked models. The literature and tweaked models were used a priori (with covariate only) and with Bayesian fitting to predict each individual concentration from the previous concentration(s). Their respective predictive abilities were compared using median relative prediction error (MDPE%) and median absolute relative prediction error (MDAPE%). The total dataset was composed of 115 concentrations from 58 patients. For each of the six splits, the "estimation" and the "prediction" datasets were respectively composed of 44 and 14 patients or 45 and 13 patients. Six popPK models were selected in the literature. MDPE% and MDAPE% were globally lower for the tweaked than for the literature models, especially for a priori predictions. The "prior approach" could be a valuable tool to improve the predictive ability of literature models, especially for a priori predictions, which are important to optimizedosing in emergency situations. The "prior approach" could be a valuable tool to improve the predictive ability of literature models, especially for a priori predictions, which are important to optimize dosing in emergency situations. Critically ill neonates and paediatric patients m
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत