Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/a-674563.html Compared with low FWC soil, high FWC soil released more CO2 from glucose, and the ratio of cumulative primed carbon to glucose mineralization under low FWC was significantly higher than that under high FWC soil, indicating that soil microorganisms under the high FWC condition might preferentially mineralize more glucose than SOC and consequently lower priming effect. Therefore, the priming effect under high FWC was smaller than that under low FWC. There was a significant positive relationship between priming effect and microbial biomass carbon, microbial biomass carbon/microbial biomass nitrogen, and NH4+-N, indicating that soil microbial biomass and composition could be changed under low FWC condition. The improved microbial "nitrogen-mining" would increase priming effect. Consequently, the decline of soil moisture of mountain meadow induced by global climate change may increase the priming effect of carbon, with consequences on carbon loss.Exploring the distribution patterns of soil nutrients in aggregates of forests along different altitudes in arid and semi-arid areas can provide a theoretical basis for understanding nutrient cycling in vulnerable mountain ecosystems. In this study, we analyzed the distribution and stability of aggregates in the 0-20 cm soil layer along different altitudes (1380-2438 m) of Helan Mountains and measured the storage and stoichiometric characteristics of organic carbon, total nitrogen, and total phosphorus in soil aggregates. Results showed that the main soil aggregates of Helan Mountains changed from micro-aggregates (0.25-0.053 mm) to macro-aggregates (>0.25 mm) with increa-sing elevation. The mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates in high altitude (2139-2248 m) were significantly higher than those in low altitude (1380-1650 m). The content and storage of organic carbon and total nitrogen in soil aggregates of different size fractions were
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत