Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pd-1-pd-l1-inhibitor-2.html Data-driven modeling directly utilizes experimental data with machine learning techniques to predict a material's response without the necessity of using phenomenological constitutive models. Although data-driven modeling presents a promising new approach, it has yet to be extended to the modeling of large-deformation biological tissues. Herein, we extend our recent local convexity data-driven (LCDD) framework (He and Chen, 2020) to model the mechanical response of a porcine heart mitral valve posterior leaflet. The predictability of the LCDD framework by using various combinations of biaxial and pure shear training protocols are investigated, and its effectiveness is compared with a full structural, phenomenological model modified from Zhang et al. (2016) and a continuum phenomenological Fung-type model (Tong and Fung, 1976). We show that the predictivity of the proposed LCDD nonlinear solver is generally less sensitive to the type of loading protocols (biaxial and pure shear) used in the data set, while more sensitive to the insufficient coverage of the experimental data when compared to the predictivity of the two selected phenomenological models. While no pre-defined functional form in the material model is necessary in LCDD, this study reinstates the importance of having sufficiently rich data coverage in the date-driven and machine learning type of approaches. It is also shown that the proposed LCDD method is an enhancement over the earlier distance-minimization data-driven (DMDD) against noisy data. This study demonstrates that when sufficient data is available, data-driven computing can be an alternative method for modeling complex biological materials.Springy poles are a unique load-carrying tool and inspire novel designs of other load-carrying systems. Previous experiments have shown that highly compliant poles with a natural frequency lower than step frequency are more economical than rigid
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत