Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/etc-159.html This paper presents an error-tolerant and power-efficient impedance measurement scheme for bioimpedance acquisition. The proposed architecture measures the magnitude and the real part of the target complex impedance, unlike other impedance measurement architectures measuring either the real/imaginary components or the magnitude and phase. The phase information of the target impedance is obtained by using the ratio between the magnitude and the real components. This can allow for avoiding direct phase measurements, which require fast, power-hungry circuit blocks. A reference resistor is connected in series with the target impedance to compensate for the errors caused by the delay in the sinusoidal signal generator and the amplifier at the front. Moreover, an additional magnitude measurement path is connected to the reference resistor to cancel out the nonlinearity of the proposed system and enhance the settling speed of the low-pass filter by a ratio-based detection. Thanks to this ratio-based detection, the accuracy is enhanced by 30%, and the settling time is improved by 87.7% compared to the conventional single-path detection. The proposed integrated circuit consumes only 513 μW for a wide frequency range of 10 Hz to 1 MHz, with the maximum magnitude and phase errors of 0.3% and 2.1°, respectively.Rock lithology recognition plays a fundamental role in geological survey research, mineral resource exploration, mining engineering, etc. However, the objectivity of researchers, rock variable natures, and tedious experimental processes make it difficult to ensure the accurate and effective identification of rock lithology. Additionally, multitype hybrid rock lithology identification is challenging, and few studies on this issue are available. In this paper, a novel multitype hybrid rock lithology detection method was proposed based on convolutional neural network (CNN), and neural network model compression technology was
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत