Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Raltitrexed.html Solid organ (liver, spleen, and kidney) hemorrhage is often life-threatening and can be difficult to stop in critically ill patients. Traditional techniques for arresting this ongoing bleeding include coagulation by high voltage electrocautery, topical hemostatic application, and the delivery of ignited argon gas. The goal of this study/video was to demonstrate the efficacy of a new energy device for arresting persistent solid organ hemorrhage.A novel instrument utilizing bipolar radiofrequency (RF) energy which acts to ignite/boil dripping saline from a simple handpiece is employed to arrest ongoing bleeding from solid organ injuries in a porcine model. This instrument is extrapolated from experience within elective hepatic resections. An escalating series of injuries to solid organs within a porcine model will be created. This will be followed by arresting hemorrhage with this novel energy device in sequence. A standard suction device will also be employed. This simple saline/RF energy instrument has the potential to arrest ongoing solid organ surface/capsular bleeding, as well as moderate hemorrhage associated with deep lacerations.There is a growing interest in using liposomes to deliver compounds in vivo particularly for targeted treatment approaches. Depending on the liposome formulation, liposomes may be preferentially taken up by different cell types in the body. This may influence the efficacy of the therapeutic particle as progression of different diseases is tissue- and cell-type-specific. In this protocol, we present one method for synthesizing and fluorescently labeling liposomes using DSPC, cholesterol, and PEG-2000 DSPE and the lipid dye DiD as a fluorescent label. This protocol also presents an approach for delivering liposomes in vivo and assessing cell-specific uptake of liposomes using flow cytometry. This approach can be used to determine the types of cells that take up liposomes and quantify
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत