Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cathepsin-g-inhibitor-i.html Quantitative modelling confirms the plausibility of this mechanism. We anticipate that buffering of attractant concentration is a general mechanism for ensuring robust cell migration.Eukaryotic gene transcription is associated with the eviction of nucleosomes and the formation of open chromatin, which enables the recruitment of transcriptional coactivators and other regulatory factors. Open chromatin is thus a hallmark of functional regulatory DNA elements in genomes. In recent years, formaldehyde-assisted isolation of regulatory elements (FAIRE) has proven powerful in identifying open chromatin in the genome of various eukaryotes, particularly yeast, human, and mouse. However, it has proven challenging to adapt the FAIRE protocol for use on plant material, and the few available protocols all have their drawbacks (e.g., applicability only to specific developmental stages). In this Protocol Extension, we describe a reliable FAIRE protocol for mature Arabidopsis (Arabidopsis thaliana) leaves that adapts the original protocol for use on plants. The main differences between this protocol extension and the earlier FAIRE protocol are an increased formaldehyde concentration in the chromatin crosslinking buffer, application of a repeated vacuum to increase crosslinking efficiency, and altered composition of the DNA extraction buffer. The protocol is applicable to leaf chromatin of unstressed and stressed plants and can be completed within 1 week. Here, we also describe downstream analysis using qPCR and next-generation sequencing. However, this Protocol Extension should also be compatible with downstream hybridization to a DNA microarray. In addition, it is likely that only minor adaptations will be necessary to apply this protocol to other Arabidopsis organs or plant species.The Drosophila larva has been used to investigate many processes in cell biology, including morphogenesis, physiology and responses to
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत