Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/brefeldin-a.html Pulse wave imaging (PWI) is an ultrasound imaging modality that estimates the wall stiffness of an imaged arterial segment by tracking the pulse wave propagation. The aim of the present study is to integrate PWI with vector flow imaging, enabling simultaneous and co-localized mapping of vessel wall mechanical properties and 2-D flow patterns. Two vector flow imaging techniques were implemented using the PWI acquisition sequence 1) multiangle vector Doppler and 2) a cross-correlation-based vector flow imaging (CC VFI) method. The two vector flow imaging techniques were evaluated in vitro using a vessel phantom with an embedded plaque, along with spatially registered fluid structure interaction (FSI) simulations with the same geometry and inlet flow as the phantom setup. The flow magnitude and vector direction obtained through simulations and phantom experiments were compared in a prestenotic and stenotic segment of the phantom and at five different time frames. In most comparisons, CC VFI provided significantly lower bias or precision than the vector Doppler method ( ) indicating better performance. In addition, the proposed technique was applied to the carotid arteries of nonatherosclerotic subjects of different ages to investigate the relationship between PWI-derived compliance of the arterial wall and flow velocity in vivo. Spearman's rank-order test revealed positive correlation between compliance and peak flow velocity magnitude ( rs = 0.90 and ), while significantly lower compliance ( ) and lower peak flow velocity magnitude ( ) were determined in older (54-73 y.o.) compared with young (24-32 y.o.) subjects. Finally, initial feasibility was shown in an atherosclerotic common carotid artery in vivo. The proposed imaging modality successfully provided information on blood flow patterns and arterial wall stiffness and is expected to provide additional insight in studying carotid artery biomechanics, as well as
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत