Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/hc-258.html We investigate the topological supersolid states of dipolar Fermi gases trapped in a spin-dependent 2D optical lattice. Our results show that topological supersolid states can be achieved via the combination of topological superfluid states with the stripe order. Different from the general held belief that supersolid state in fermionic system can only survive with simultaneous coexistence of the repulsive and attractive dipolar interaction. We demonstrate that it can be maintained when the dipolar interaction is attractive in both x and y direction. By adjusting the ratio of hopping amplitude between different directions and dipolar interaction strength U, the system will undergo a phase transition among p x + ip y superfluid state, p y -wave superfluid state, and the topological supersolid state. The supersolid state in the attractive environment is proved to be stable by the positive sign of the inverse compressibility. We also design an experimental protocol to realize the staggered next-next-nearest-neighbor hopping via the laser assisted tunneling technique, which is the key to simulate the spin-dependent potential.Spinal cord injury is a devastating trauma with high mortality and disability, for which there is no effective treatment. Stem-cell based tissue engineering has been reported to promote neural functional recovery. Presently, building a neural scaffold with excellent biocompatibility for cells and tissues is still challenging. In this study, a new thermosensitive composite hydrogel based on chitosan, hydroxyethyl cellulose, collagen, and β-phosphoglycerate (CS-HEC-Col/GP hydrogel) is developed to encapsulate murine bone marrow-derived mesenchymal stem cells (BMSC) for improving the therapeutic efficacy of spinal cord injury mice. This composite hydrogel possesses a good cytocompatibility to mice BMSC by the Live/Dead staining, minimized inflammatory reaction in vivo by hematoxylin and eosin staining, an
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत