Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cbl0137-cbl-0137.html Blood pressure measurement (BPM) is one of the most often performed procedures in clinical practice, but especially office BPM is prone to errors. Unattended automated office BPM (AOBPM) is somewhat standardised and observer-independent, but time and space consuming. We aimed to assess whether an AOBPM protocol can be abbreviated without losing accuracy. In our retrospective single centre study, we used all AOBPM (AOBPM protocol of the SPRINT study), collected over 14 months. Three sequential BPM (after 5 minutes of rest, spaced 2 minutes) were automatically recorded with the patient alone in a quiet room resulting in three systolic and diastolic values. We compared the mean of all three (RefProt) with the mean of the first two (ShortProtA) and the single first BPM (ShortProtB). We analysed 413 AOBPM sets from 210 patients. Mean age was 52±16 years. Mean values for RefProt were 128.3/81.3 mmHg, for ShortProtA 128.4/81.4 mmHg, for ShortProtB 128.8/81.4 mmHg. Mean difference and limits of agreement for RefProt vs. ShortProtA and ShortProtB were -0.1±4.2/-0.1±2.8 mmHg and -0.5±8.1/-0.1±5.3 mmHg, respectively. With ShortProtA, 83% of systolic and 92% of diastolic measurements were within 2 mmHg from RefProt (67/82% for ShortProtB). ShortProtA or ShortProtB led to no significant hypertensive reclassifications in comparison to RefProt (p-values 0.774/1.000/1.000/0.556). Based on our results differences between the RefProt and ShortProtA are minimal and within acceptable limits of agreement. Therefore, the automated procedure may be shorted from 3 to 2 measurements, but a single measurement is insufficient. Based on our results differences between the RefProt and ShortProtA are minimal and within acceptable limits of agreement. Therefore, the automated procedure may be shorted from 3 to 2 measurements, but a single measurement is insufficient. To identify laboratory biomarkers that predict disease severity and outc
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत