Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/d-lin-mc3-dma.html Both target-specific and domain-invariant features can facilitate Open Set Domain Adaptation (OSDA). To exploit these features, we propose a Knowledge Exchange (KnowEx) model which jointly trains two complementary constituent networks (1) a Domain-Adversarial Network (DAdvNet) learning the domain-invariant representation, through which the supervision in source domain can be exploited to infer the class information of unlabeled target data; (2) a Private Network (PrivNet) exclusive for target domain, which is beneficial for discriminating between instances from known and unknown classes. The two constituent networks exchange training experience in the learning process. Toward this end, we exploit an adversarial perturbation process against DAdvNet to regularize PrivNet. This enhances the complementarity between the two networks. At the same time, we incorporate an adaptation layer into DAdvNet to address the unreliability of the PrivNet's experience. Therefore, DAdvNet and PrivNet are able to mutually reinforce each other during training. We have conducted thorough experiments on multiple standard benchmarks to verify the effectiveness and superiority of KnowEx in OSDA.The Coarse-To-Fine (CTF) matching scheme has been widely applied to reduce computational complexity and matching ambiguity in stereo matching and optical flow tasks by converting image pairs into multi-scale representations and performing matching from coarse to fine levels. Despite its efficiency, it suffers from several weaknesses, such as tending to blur the edges and miss small structures like thin bars and holes. We find that the pixels of small structures and edges are often assigned with wrong disparity/flow in the upsampling process of the CTF framework, introducing errors to the fine levels and leading to such weaknesses. We observe that these wrong disparity/flow values can be avoided if we select the best-matched value among their neig
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत