Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/XL880(GSK1363089,EXEL-2880).html The batch kinetic experiments showed that the adsorption of QDNPs followed first- and second-order kinetic interactions at low and high ISs, respectively. These results indicate that the well-known colloid filtration theory that assumes irreversible first-order kinetics for colloid deposition is not suitable for describing the QDNP adsorption. The findings in our work can aid better description and prediction of fate and transport of QDNPs in subsurface environments.Accurate calculation of the longitudinal dispersion coefficient (Kx) of pollution is essential in modeling river pollution status. Various equations are presented to calculate the Kx using experimental, analytical, and mathematical methods. Although machine learning models are more reliable than experimental equations in the presence of uncertainties missing data, they have not been widely used in predicting Kx. In this study, the Kx of the river was predicted using machine learning methods, including least square-support vector machine (LS-SVM), adaptive neuro-fuzzy inference system (ANFIS), and ANFIS optimized by Harris hawk optimization (ANFIS-HHO), and the results were compared with that of the experimental methods. Several scenarios were designed by different combinations of input variables, such as the average depth of the flow (H), average flow velocity (U), and shear velocity (u⁎). The results showed that machine learning models had a more efficient performance to predict Kx than experimental equations. The ANFIS-HHO, with a scenario containing all the input variables, performed better than the other two models, with root mean square error, mean absolute percentage error, and coefficient of determination of 17.0, 0.22, and 0.97, respectively. Furthermore, the HHO algorithm slightly increased the prediction performance of the ANFIS. The discrepancy ratio (DR) evaluation criteria showed that experimental equations overestimated t
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत