Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/deg-77.html RESULTS After histologic comparison, the DTI sensitivity and specificity to predict disrupted fiber tracts were respectively of 89% and 90%. The positive and negative predicted values of DTI were 80% and 95%. The DTI data were in line with the histologic myelin fiber orientation in 90% of patients. In our series, the prevalence of destructed fiber was 31%. Glioblastoma WHO grade IV harbored a higher proportion of destructed white matter tracts. Lower WHO grades were associated with higher preservation of subcortical fiber tracts. CONCLUSION This DTI/histology study of "en bloc"-resected gliomas reported a high and reproducible concordance of the visual color-coded FA map with the histologic examination to predict subcortical fiber tract disruption. Our series brought consistency to the DTI data that could be performed routinely for glioma surgery to predict the tumor grade and the postoperative clinical outcomes.BACKGROUND The objective recording of subjectively experienced pain is a problem that has not been sufficiently solved to date. In recent years, data sets have been created to train artificial intelligence algorithms to recognize patterns of pain intensity. The multimodal recognition of pain with machine learning could provide a way to reduce an over- or undersupply of analgesics, explicitly in patients with limited communication skills. OBJECTIVES This study investigated the methodology of automated multimodal recognition of pain intensity and modality using machine-learning techniques of artificial intelligence. Multimodal recognition rates of experimentally induced phasic electrical and heat pain stimuli were compared with uni- and bimodal recognition rates. MATERIAL AND METHODS On the basis of the X‑ITE Pain Database, healthy subjects were stimulated with phasic electro-induced pain and heat pain, and their corresponding pain responses were recorded with multimodal sensors (acoustic, video-based, physiolod
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत