Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/srpin340.html The prediction accuracy of GS and phenotypes was similar to each other regardless of the amount (0, 50, 100%) of stage-1 data incorporated in the GS model. Ranking of stage-1 lines by GS predictions that used no stage-1 phenotypic data had marginally lower correspondence to stage-2 phenotypic rankings than rankings of stage-1 lines based on phenotypes. Stage-1 lines ranked high by GS had slightly inferior phenotypes in stage-2 trials than lines ranked high by phenotypes. Cost analysis indicated that replacing stage-1 phenotyping with GS would allow nearly three times more stage-1 candidates to be assessed and provide 0.84-2.23 times greater gain from selection. We conclude that GS can complement or replace phenotyping in early stages of phenotyping.A computational methodology to simulate the diffusion of ions from point sources (e.g., ion channels) is described. The outlined approach computes the ion concentration from a cluster of many ion channels at pre-specified locations as a function of time using the theory of propagation integrals. How the channels' open/closed states evolve in time does not need to be known at the start of the simulation, but can be updated on-the-fly as the simulation goes along. The technique uses analytic formulas for the solutions of the diffusion equation for three common geometries (1) ions diffusing from a membrane (planar symmetry); (2) ions diffusing into a narrow cleft for effective two-dimensional diffusion (cylindrical symmetry); and (3) ions diffusing into open space like the cytosol (spherical symmetry). Because these formulas are exact solutions valid for arbitrarily long timesteps, no spatial or time discretizations are necessary. The only discrete locations are where the ion concentration is computed, and the only discrete timesteps are when the channels' open/closed states are updated. Beyond pure diffusion, the technique is generalized to the Excess Buffer Approximation o
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत