Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/EGFR(HER).html We measure the association kinetics of unlabeled L-Tym by detecting its influence on the hybridization of the labeled complementary strand. We find that L-Tym slows the association rate of the complementary strand with the aptamer but does not impact its dissociation rate, suggesting an SN1-like mechanism where the complementary strand must dissociate before L-Tym can bind. The competitive model revealed a slow association rate between L-Tym and the aptamer, producing a long-lived L-Tym-aptamer complex that blocks hybridization with the labeled complementary strand. These results provide insight about the kinetics and mechanism of analyte recognition in this structure-switching aptamer, and the methodology provides a general means of measuring rates of unlabeled-analyte binding kinetics in aptamer-based biosensors.Micropatterns of conductive polymers are key for various applications in the fields of flexible electronics and sensing. A bottom-up method that allows high-resolution printing without additives is still lacking. Here, such a method is presented based on microprinting by the laser-induced microbubble technique (LIMBT). Continuous micropatterning of polyaniline (PANI) was achieved from a dispersion of the emeraldine base form of PANI (EB-PANI) in n-methyl-2-pyrrolidone (NMP). A focused laser beam is absorbed by the EB-PANI nanoparticles and leads to formation of a microbubble, followed by convection currents, which rapidly pin EB-PANI nanoparticles to the bubble/substrate interface. Micro-Raman spectra confirmed that the printed patterns preserve the molecular structure of EB-PANI. A simple transformation of the printed lines to the conducting emeraldine salt form of PANI (ES-PANI) was achieved by doping with various acid solutions. The hypothesized deposition mechanism was verified, and the resulting structures were characterized by microscopic methods. The microstructures displayed conductivities of 3.8 × 10-1 S/
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत