Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ 0%, and the false-negative-rate was 0.015%. Similar results were found even when only CGM samples below 70 were considered. The true-positive-hyperglycemia-prediction-rate was 61%. Conclusions State-of-the-art SML tools are effective in predicting the glucose level values of patients with type-1diabetes and notifying these patients of future hypoglycemic and hyperglycemic events, thus improving glycemic control. The algorithm can be used to improve the calculation of the basal insulin rate and bolus insulin, and suitable for a closed loop "artificial pancreas" system. The algorithm provides a personalized medical solution that can successfully identify the best-fit method for each patient. This article is protected by copyright. All rights reserved.Aims to build a tool to assess the management of inpatients with diabetes mellitus and to investigate its relationship, if any, with clinical outcomes. Materials and methods 678 patients from different settings, Internal Medicine (IMU, n = 255), General Surgery (GSU, n = 230) and Intensive Care (ICU, n = 193) Units, were enrolled. A work-flow of clinical care of diabetes was created according to guidelines. The workflow was divided in 5 different domains 1) initial assessment, 2) glucose monitoring, 3) medical therapy, 4) consultancies, 5) discharge. Each domain was assessed by a performance score (PS), computed as the sum of the scores achieved in a set of indicators of clinical appropriateness, management and patient empowerment. Appropriate glucose goals were included as intermediate phenotypes. Clinical outcomes included hypoglycemia, survival rate and clinical conditions at discharge. Results the total PS and those of initial assessment and glucose monitoring were significantly lower in GSU respect to IMU and ICU (P less then 0.0001). The glucose monitoring PS was associated with lower risk of hypoglycemia (OR 0.55; P less then 0.0001), whereas both the PSs of glucose monitoring and medic
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत