Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cid755673.html Even though modeling has been frequently used to understand the autotrophic deammonification-based membrane-aerated biofilm reactor (MABR), the relationships between system-specific biofilm property settings and model predicted N2O production have yet to be clarified. To this end, this study investigated the impacts of 4 key biofilm property settings (i.e., biofilm thickness/compactness, boundary layer thickness, diffusivity of soluble components in the biofilm structure, and biofilm discretization) on one-dimensional modeling of the MABR, with the focus on its N2O production. The results showed that biofilm thickness/compactness (200-1000 μm), diffusivity of soluble components in the biofilm structure (reduction factor of diffusivity 0.2-0.9), and biofilm discretization (12-28 grid points) significantly influenced the simulated N2O production, while boundary layer thickness (0-300 μm) only played a marginal role. In the studied ranges of biofilm property settings, distinct upper and lower bounds of N2O production factor (i.e., the percentage ratio of N2O formed to NH4+ removed, 5.5% versus 2.3%) could be predicted. In addition to the microbial community structure, the N2O production pathway contribution differentiation was also subject to changes in biofilm property settings. Therefore, biofilm properties need to be quantified experimentally or set properly to model N2O production from the MABR correctly. As a good practice for one-dimensional modeling of N2O production from biofilm-based reactors, especially the MABR performing autotrophic deammonification, the essential information about those influential biofilm property settings identified in this study should be disclosed and clearly documented, thus ensuring both the reproducibility of modeling results and the reliable applications of N2O models.Modification of biochar for efficient removal of antibiotics from water could be a valuable approach in the enviro
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत