Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/lf3.html Graphical models have received an increasing amount of attention in network psychometrics as a promising probabilistic approach to study the conditional relations among variables using graph theory. Despite recent advances, existing methods on graphical models usually assume a homogeneous population and focus on binary or continuous variables. However, ordinal variables are very popular in many areas of psychological science, and the population often consists of several different groups based on the heterogeneity in ordinal data. Driven by these needs, we introduce the finite mixture of ordinal graphical models to effectively study the heterogeneous conditional dependence relationships of ordinal data. We develop a penalized likelihood approach for model estimation, and design a generalized expectation-maximization (EM) algorithm to solve the significant computational challenges. We examine the performance of the proposed method and algorithm in simulation studies. Moreover, we demonstrate the potential usefulness of the proposed method in psychological science through a real application concerning the interests and attitudes related to fan avidity for students in a large public university in the United States.To describe the clinical manifestations, immunological features, and risk factors in patients with sarcoidosis complicated with autoimmune diseases (ADs) as well as determine the frequency of autoantibodies and possible correlation between autoantibodies and laboratory data. Patients with pathologically confirmed sarcoidosis at Beijing Chaoyang Hospital (China) between January 2017 and October 2020 were included. Age- and sex-matched patients who visited the rheumatology outpatient clinic without systemic or ADs were included as controls. Demographic, clinical, serological, and radiological data of sarcoidosis patients were recorded and analyzed. To exclude ADs, autoantibodies, such as antinuclear antibody, extract
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत