Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ide397-gsk-4362676.html Antimicrobial resistance (AMR) remains one of the most challenging phenomena of modern medicine. Machine learning (ML) is a subfield of artificial intelligence that focuses on the development of algorithms that learn how to accurately predict outcome variables using large sets of predictor variables that are typically not hand selected and are minimally curated. Models are parameterized using a training dataset and then applied to a test dataset on which predictive performance is evaluated. The application of ML algorithms to the problem of AMR has garnered increasing interest in the past 5 years due to the exponential growth of experimental and clinical data, heavy investment in computational capacity, improvements in algorithm performance and increasing urgency for innovative approaches to reducing the burden of disease. Here, we review the current state of research at the intersection of ML and AMR with an emphasis on three domains of work. The first is the prediction of AMR using genomic data. The second is the use of ML to gain insight into the cellular functions disrupted by antibiotics, which forms the basis for understanding mechanisms of action and developing novel anti-infectives. The third focuses on the application of ML for antimicrobial stewardship using data extracted from the electronic health record. Though the use of ML for understanding, diagnosing, treating and preventing AMR is still in its infancy, the continued growth of data and interest ensures it will become an important tool for future translational research programs.Temperature is an important environmental factor governing the ability of organisms to grow, survive and reproduce. Thermal performance curves (TPCs), with some caveats, are useful for charting the relationship between body temperature and some measure of performance in ectotherms, and provide a standardized set of characteristics for interspecific comparisons. Endot
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत