Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tasquinimod.html The coronaviruses are a deadly family of epidemic viruses that can spread from one individual to another very quickly, infecting masses. The literature on epidemics indicates that the early diagnosis of a coronavirus infection can lead to a reduction in mortality rates. To prevent coronavirus disease 2019 (COVID-19) from spreading, the regular identification and monitoring of infected patients are needed. In this regard, wireless body area networks (WBANs) can be used in conjunction with machine learning and the Internet of Things (IoT) to identify and monitor the human body for health-related information, which in turn can aid in the early diagnosis of diseases. This paper proposes a novel coronavirus-body area network (CoV-BAN) model based on IoT technology as a real-time health monitoring system for the detection of the early stages of coronavirus infection using a number of wearable biosensors to examine the health status of the patient. The proposed CoV-BAN model is tested with five machine learning-based classification methods, including random forest, logistic regression, Naive Bayes, support vector machine and multi-layer perceptron classifiers, to optimize the accuracy of the diagnosis of COVID-19. For the long-term sustainability of the sensor devices, the development of energy-efficient WBAN is critical. To address this issue, a long-range (LoRa)-based IoT program is used to receive biosensor signals from the patient and transmit them to the cloud directly for monitoring. The experimental results indicate that the proposed model using the random forest classifier outperforms models using the other classifiers, with an average accuracy of 88.6%. In addition, power consumption is reduced when LoRa technology is used as a relay node.Objectives of this study were to analyze characteristics influencing blood donation status, to identify anxieties and reasons for (non-)blood donation, and potential channels
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत