Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/mk-0752.html This paper describes a quantitative approach to understanding the signal, contrast and weighting of magnetic resonance (MR) images. It uses the concept of pulse sequences as tissue property (TP) filters and models the signal, contrast and weighting of sequences using either a single TP-filter (univariate model) or several TP-filters (the multivariate model). For the spin echo (SE) sequence using the Bloch equations, voxel signal intensity is plotted against the logarithm of the value of the TPs contributing to the sequence signal to produce three TP-filters, an exponential ρm-filter, a low pass T1-filter and a high pass T2-filter. Using the univariate model which considers signal changes in only one of ρm, T1, or T2 at a time, the first partial derivative of signal with respect to the natural logarithm of ρm, T1 or T2 is the sequence weighting for each filter (for small changes in each TP). Absolute contrast is then the sequence weighting multiplied by the fractional change in TP for each filter. For large chncluded. In the text TP-filters are distinguished from k-space filters, signal filters (S-filters) which are used in imaging processing as well as to describe windowing the signal width and level of images, and spatial filters. The TP-filters approach resolves many of the ambiguities and inconsistencies associated with conventional qualitative weighting and provides a variety of new insights into the signal, contrast and weighting of MR images which are not apparent using qualitative weighting. The TP-filter approach relates the preparation component of pulse sequences to voxel signal, and contrast between two voxels. This is complementary to k-space which relates the acquisition component of pulse sequences to the spatial properties of MR images and their global contrast.Chest computed tomography (CT) is frequently used in diagnosing coronavirus disease 2019 (COVID-19) for detecting abnormal changes in the lungs
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत