Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ Bacillus thuringiensis (Bt) is efficient, strongly specific, and avirulent to humans, making it one of the most popular biopesticides in the world. Bt LLP29 is a mosquitocidal strain that was first isolated from Magnolia denudata. To understand its molecular mechanism against mosquitoes, the genome of Bt LLP29 was sequenced and annotated in this study. The LLP29 genome was found to have a total length of 5.99 Mb, with an average G + C content of 35.21%. A total of 6107 coding sequences were also detected, together with 42 rRNAs and 124 tRNAs and 135 other RNAs. With the help of annotation databases, including GO, COG, KEGG, Nr and Swiss-Prot, most unigene functions were identified. At the same time, a collinear analysis was performed on the genome of LLP29. There were also some virulence genes detected, including cry, chitinase, zwittermicin and vip.Responses to sunlight exposure of the oil-degrading Dietzia cinnamea P4 strain were evaluated by transcriptional levels of SOS genes, photoreactivation and genes involved in tolerance to high levels of reactive oxygen species. The P4 strain was exposed for 1 and 2 h and the magnitude of level changes in the mRNA was evaluated by qPCR. The results described the activation of the SOS system, with the decline of the repressor lexA gene levels and the concomitant increase of recA and uvrAD genes levels. The genes that participate in the photoreactivation process were also responsive to sunlight. The phrB gene encoding deoxyribodipyrimidine photo-lyase had its expression increased after 1-h exposure, while the phytAB genes showed a progressive increase over the studied period. The protective genes against reactive oxygen species, catalases, superoxides, peroxidases, and thioredoxins, had their expression rates detected under the conditions validated in this study. These results show a fast and coordinated response of genes from different DNA repair and tolerance mechanisms employed by strain P4, s
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत