Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/sivelestat-sodium.html An accurate tumour segmentation in brain images is a complicated task due to the complext structure and irregular shape of the tumour. In this letter, our contribution is twofold (1) a lightweight brain tumour segmentation network (LBTS-Net) is proposed for a fast yet accurate brain tumour segmentation; (2) transfer learning is integrated within the LBTS-Net to fine-tune the network and achieve a robust tumour segmentation. To the best of knowledge, this work is amongst the first in the literature which proposes a lightweight and tailored convolution neural network for brain tumour segmentation. The proposed model is based on the VGG architecture in which the number of convolution filters is cut to half in the first layer and the depth-wise convolution is employed to lighten the VGG-16 and VGG-19 networks. Also, the original pixel-labels in the LBTS-Net are replaced by the new tumour labels in order to form the classification layer. Experimental results on the BRATS2015 database and comparisons with the state-of-the-art methods confirmed the robustness of the proposed method achieving a global accuracy and a Dice score of 98.11% and 91%, respectively, while being much more computationally efficient due to containing almost half the number of parameters as in the standard VGG network.The rapid proliferation of wearable devices for medical applications has necessitated the need for automated algorithms to provide labelling of physiological time-series data to identify abnormal morphology. However, such algorithms are less reliable than gold-standard human expert labels (where the latter are typically difficult and expensive to obtain), due to their large inter- and intra-subject variabilities. Actions taken in response to these algorithms can therefore result in sub-optimal patient care. In a typical scenario where only unevenly sampled continuous or numeric estimates are provided, without access to the "grou
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत