Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/gm6001.html Developments in the field of photoredox catalysis that leveraged the long-lived excited states of Ir(III) and Ru(II) photosensitizers to enable radical coupling processes paved the way for explorations of synthetic transformations that would otherwise remain unrealized. While first row transition metal photocatalysts have not been as extensively investigated, valuable synthetic transformations covering broad scopes of olefin functionalization have been recently reported featuring photoactivated chlorobis(phenanthroline) Cu(II) complexes. In this study, the photochemical processes underpinning the catalytic activity of [Cu(dmp)2Cl]Cl (dmp = 2,9-dimethyl-1,10-phenanthroline) were studied. The combined results from static spectroscopic measurements and conventional photochemistry, ultrafast transient absorption, and electron paramagnetic resonance spin trapping experiments strongly support blue light (λex = 427 or 470 nm)-induced Cu-Cl homolytic bond cleavage in [Cu(dmp)2Cl]+ occurring in less then 100 fs. On the basis of electronic structure calculations, this bond-breaking photochemistry corresponds to the Cl → Cu(II) ligand-to-metal charge transfer transition, unmasking a Cu(I) species [Cu(dmp)2]+ and a Cl atom, thereby serving as a departure point for both Cu(I)- or Cu(II)-based photoredox transformations. No net photochemistry was observed through direct excitation of the ligand-field transitions in the red (λex = 785 or 800 nm), and all combined experiments indicated no evidence of Cu-Cl bond cleavage under these conditions. The underlying visible light-induced homolysis of a metal-ligand bond yielding a one-electron-reduced photosensitizer and a radical species may form the basis for novel transformations initiated by photoinduced homolysis featuring in situ-formed metal-substrate adducts utilizing first row transition metal complexes.Manipulation of gas bubbles in an aqueous ambient environment is fundamental to
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत