Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/A-966492.html Lateral osteotomies via this approach addressed the nasal bony pyramid in all ten (100%) cadavers. The swinging door technique enabled correction of the caudal septum in six (60%) cadavers. Several rhinoplasty techniques can be successfully performed on cadavers via the sublabial approach and we hope this work can be translated to human subjects. Several rhinoplasty techniques can be successfully performed on cadavers via the sublabial approach and we hope this work can be translated to human subjects. This study aimed to maximise the ability of stimulus-frequency otoacoustic emissions (SFOAEs) to predict hearing status and thresholds based on machine-learning models. SFOAE data and audiometric thresholds were collected at octave frequencies from 0.5 to 8 kHz. Support vector machine, k-nearest neighbour, back propagation neural network, decision tree, and random forest algorithms were used to build classification models for status identification and to develop regression models for threshold prediction. About 230 ears with normal hearing and 737 ears with sensorineural hearing loss. All classification models yielded areas under the receiver operating characteristic curve of 0.926-0.994 at 0.5-8 kHz, superior to the previous SFOAE study. The regression models produced lower standard errors (8.1-12.2 dB, mean absolute errors 5.53-8.97 dB) as compared to those for distortion-product and transient-evoked otoacoustic emissions previously reported (8.6-19.2 dB). SFOAEs using machine-learning approaches offer promising tools for the prediction of hearing capabilities, at least at 0.5-4 kHz. Future research may focus on further improvements in accuracy and reductions in test time to improve clinical utility. SFOAEs using machine-learning approaches offer promising tools for the prediction of hearing capabilities, at least at 0.5-4 kHz. Future research may focus on further improvements in accuracy and reductions in test time
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत